摘要

以机组资源利用率最大作为优化目标进行机组配对研究,根据航班计划表构建航班连接网络图,基于深度优先搜索(DFS)算法产生初始配对结果,提出改进二进制粒子群优化算法(IBPSO)进行寻优.IBPSO引入指数型增长惩罚因子和基于余弦自适应惯性权重,种群进化前期采用无速度限制S形映射函数与强制性位置更新程序,后期采用正弦映射函数与非强制性位置更新程序.两组不同规模航班算例验证表明,IBPSO能克服原始算法收敛慢、迭代后期局部开发能力差的缺点,在维数增加时依然能有效提高算法寻优速度和解的质量.