摘要
针对滚动轴承早期故障信号被背景噪声淹没、故障特征不明显的问题,提出一种基于小波包分解和互补集合经验模态分解(CEEMD)的轴承早期故障信号特征提取方法.利用Matlab软件对采集到的轴承振动信号进行快速谱峭度分析,根据峭度最大化原则确定带通滤波器的中心频率和带宽,设计带通滤波器;对经过带通滤波器滤波后的信号进行小波包分解和CEEMD分解,根据峭度、相关系数筛选出有效本征模态函数(IMF)分量;利用IMF分量重构小波包信号,对重构小波包信号进行包络谱分析,提取轴承早期故障信号特征频率.该方法通过谱峭度分析降低背景噪声干扰,通过小波包分解增强故障冲击信号,并将CEEMD与小波包分解相结合,解决经典EMD分解存在的模态混叠、无效分量问题.仿真结果表明,相较于传统包络解调算法,重构后信号的背景噪声得到抑制,故障特征分量突出,验证了所提方法的可行性和有效性.
- 单位