摘要

本发明公开了一种基于人体骨架序列的乘客异常行为识别方法,包括步骤:1)通过摄像头拍摄扶梯区域监控视频图像;2)通过SVM检测乘客人脸并用KCF对其跟踪,得到乘客在扶梯中的运动轨迹;3)利用OpenPose深度学习网络从图像中提取人体骨架;4)将人体骨架匹配到相应的乘客轨迹,构建乘客的人体骨架序列;5)通过模板匹配从乘客人体骨架序列中检测得到异常行为骨架序列;6)利用DTW将其与各类异常行为骨架序列模板匹配,识别异常行为。通过本发明可以基于人体骨架序列准确实时地识别扶梯中乘客的多种异常行为,根据异常行为类别控制扶梯的运行情况,避免安全事故的发生。