摘要
针对深层卷积神经网络检测表面结构裂纹耗费时间长、精度不够高的问题,基于Xception网络进行自适应调整重构其分类器,利用图像增广技术扩充数据集后,引入迁移学习的方法对Xception网络进行训练。同时,与构建的ResNet50、InceptionV3和VGG19三个深层卷积神经网络模型进行对比实验,重新验证其性能。实验证明,引入迁移学习不仅可以提升模型的整体性能,还能缩减训练深层卷积神经网络的时间,训练的模型在数据集上的识别精确率达到96.24%,在对比实验中达到96.50%。
- 单位