摘要
在综述了T细胞表位预测的定义,意义和研究现状的基础上,分析了当前流行的基于误差反向传播前馈神经网络(BPNN)的T细胞表位预测模型的不足,即网络结构较难确定、训练速度慢和难以增量学习等,提出了利用排序学习前向掩蔽(SLAM)模型及其增量学习算法作为T细胞表位预测方法,并给出了构建T细胞表位预测模型的基本步骤。基因HLA-DR4(B1*0401)编码的MHC II类分子结合肽的应用实例表明,与基于BPNN的T细胞表位预测模型相比,基于SLAM的T细胞表位预测模型不但能在极短时间内完成样本的学习,而且能有效地实现增量学习。
- 单位