摘要
针对传统语音情感特征参数在进行情感分类时性能不佳的问题,该文提出了一种基于变分模态分解的语音情感识别方法。情感语音信号首先由变分模态分解提取固有模态函数,然后对所选主导固有模态函数进行重新聚合,再提取梅尔倒谱系数和各固有模态函数的希尔伯特边际谱。为了验证该文提出的特征性能,选用两种语音数据库(EMODB、RAVDESS)进行实验,按该文方法提取特征后使用极限学习机进行语音情感分类识别。实验结果表明:相比基于经验模态分解和集合经验模态分解的语音情感特征,该文提出的特征有更好的识别性能,验证了该方法的实用性。
- 单位