摘要

在水下复杂的海洋环境中,依托水下无人平台进行自主检测是进行目标探测的基础,具有重要的研究价值。针对水下无人平台在利用方位历程图进行目标检测过程中检测门限难以确定的问题,提出了一种基于深度学习的多方位谱融合检测方法,弱化了对检测门限的依赖。该方法首先利用不同方位谱生成方法产生方位谱,然后建立融合通道注意力的CA-ConvNext深度学习网络,采用结合仿真数据与实际海试无标签数据进行半监督策略训练,得到最终的目标检测模型。仿真实验结果表明多方位谱融合的检测概率相比于单一方法提高了10%,海上试验数据处理结果也表明本文方法比单独采用不同方法进行检测效果提升明显,验证了本文方法的正确性与有效性。