摘要
分别基于近红外和电子鼻融合数据、近红外数据以及电子鼻数据建立判别烟叶清香型、中间香型和浓香型三种香型风格的定性判别模型,结果表明虽然三种模型的建模准确率差异不大,都超过了89.00%,但基于融合数据建立的模型对中间香型和浓香型的预报准确率分别为82.67%和80.00%,比仅仅利用近红外数据建立模型的72.41%和73.33,也比仅仅基于电子鼻数据建立模型的68.97%和53.33%都有明显的提高。融合后预报准确率提高的可能原因是:电子鼻风味分析仪对于影响中间香型和浓香型的烟叶致香成分感应更加灵敏,捕获的信息也更多,这些新的信息可以作为NIR数据信息的有利补充,可用于建立烟叶香型分类判别准确率更高的模型。同时本研究还基于相同的融合数据,对比不同数据挖掘算法建模和预报结果差异性。实验结果表明:人工神经网络的建模结果高于支持向量机建模,人工神经网络模型的预报结果准确率只有65.00%,远低于支持向量机模型的预报结果的83.75%。这也验证了支持向量机算法可以在建模过程中减少过拟合。该研究可以为快速鉴别烟叶香型风格提供支撑,而且随着研究的深入可以争取为烟草系统的专业评吸人员提供辅助的鉴别方法。
-
单位环境科学与工程学院; 上海烟草集团有限责任公司; 同济大学