摘要
针对瓦斯突出等级评判方法预测准确度低的问题,提出一种基于拉普拉斯特征映射算法(LE)和改进的乌鸦搜索算法(ICSA)优化核极限学习机(KELM)的瓦斯突出预测模型。利用LE算法对瓦斯突出数据进行非线性降维,消除变量间的相互重叠;引入Tent扰动序列、自适应步长和自适应感知概率改进传统的乌鸦搜索算法(CSA),有效避免算法陷入局部最优,提高算法的收敛性能;采用ICSA算法对KELM的相关参数进行寻优,建立基于LE和ICSA-KELM的瓦斯突出等级评判模型。经过对比试验表明,该模型能够有效提高预测准确率。
- 单位