摘要

为满足地理国情普查及监测对湿地地表覆盖要素自动分类需求,本文以GF-2影像为数据源,采用Relief F算法优选特征,根据选取不同特征数量达到的总体分类精度和类间分类精度,对比分析面向对象的随机森林、决策树、支持向量机、最邻近4种分类方法对湿地覆被自动分类的适用性,通过实例进行对比分析,结果表明经过特征优选上述4种分类方法均可利用较少特征值达到较优的分类结果,验证了Relief F算法的有效性。在分类精度和学习速度方面,随机森林最优,决策树优于支持向量机,除最邻近方法外均可用于湿地信息普查。