摘要
提高利用可见-近红外(Vis-NIR)透射光谱检测脐橙内部物质含量的准确性在生产实际中具有重要意义。该研究利用特制的可见-近红外透射光谱测量装置采集了199个福本脐橙果蒂向上、水平、向下3种位置的透射光谱,比较了多元散射校正(multivariate scattering correction, MSC)、标准正态变量变换(standard normal variate transformation, SNV)、一阶导数和二阶导数预处理的效果,并采用效果最好的一阶导数对透射光谱进行预处理。在此基础上,结合后向区间偏最小二乘法(backward interval partial least squares, BiPLS)优选特征波段,竞争性自适应重加权采样(competitive adaptive re-weightedsampling,CARS)挑选特征变量建立了基于果蒂向上、水平、向下3种位置各自的透射光谱以及3种位置的平均光谱和加权光谱的可溶性固形物(soluble solid content, SSC)的偏最小二乘(partial least squares, PLS)模型。在果蒂向上、水平、向下3种位置各自的透射光谱建立的PLS模型中,基于果蒂水平位置透射光谱的PLS模型最优,校正相关系数为0.914,校正均方根误差为0.380,预测相关系数为0.924,预测均方根误差为0.404。基于果蒂向上、水平、向下3种位置平均透射光谱和加权透射光谱建立的PLS模型均取得了较好的预测结果,预测相关系数均大于0.91,预测均方根误差均小于0.43。该研究可以为脐橙内部物质含量在线检测装备的研制提供参考。
- 单位