摘要

为解决在空中目标类型识别过程中,目标特征单一导致识别准确率低的问题,提出一种将雷达信噪比与目标航迹特征相结合的基于循环神经网络(Recurrent Neural Network,RNN)的目标识别方法。该方法利用RNN模型在处理时序数据上的优势,挖掘雷达数据隐藏在时间层面的特征;扩展目标特征属性维度,利用智能化模型有效地将雷达信噪比与目标航迹特征相结合,提高目标识别的准确率。应用真实检飞数据,对该方法进行检验,并与传统方法进行对比分析。仿真结果表明,基于RNN的目标智能化识别方法具有更高的准确率。

  • 单位
    上海机电工程研究所