摘要
卷积神经网络的语义分割模型未有效利用特征权重信息,导致在医学图像复杂场景中分割边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的U-Net++网络,并将其应用于电子计算机断层扫描影像肺结节分割。该模型首先在卷积神经网络中提取出不同深度特征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在LIDC数据集和重庆大学附属肿瘤医院肺部电子计算机断层扫描数据集上进行了分割实验,所提方法的交叉比在两个数据集上分别可达到80.59%和87.40%、骰子系数分别可达到88.23%和90.83%。相比U-Net和U-Net++方法,该算法有效提升了图像分割性能。本文方法能在肿瘤微小细节上实现精确分割,较好地解决了肺结节向周围浸润性生长时出现欠分割的问题。
-
单位重庆市肿瘤研究所; 重庆大学