摘要
脉冲热成像技术被广泛应用于碳纤维复合材料内部缺陷检测。由于原始热成像数据包含不均匀背景及检测噪声,缺陷信号的可视化效果较差,无法直接进行缺陷检测及识别。针对上述问题,提出结合小波变换和稀疏主成分分析(Wavelet Transforming and Sparse Principal Component Analysis, WT-SPCA)的特征提取方法,以提高缺陷信号的可视化效果。首先利用小波变换进行噪声信号去除,进一步采用稀疏主成分分析提取缺陷信号特征。实验结果表明,WT-SPCA方法可有效去除不均匀背景及噪声干扰,准确提取缺陷特征。与主成分分析、稀疏主成分分析等特征提取方法相比,WT-SPCA能够有效提高缺陷信号的可视化效果及缺陷区域的信噪比水平。
- 单位