摘要

目前群组行为识别方法没有充分利用群组关联信息而导致群组识别精度无法有效提升,针对这个问题,提出了基于近邻传播算法(AP)的层次关联模块的深度神经网络模型,命名为聚类关联网络(CRN)。首先,利用卷积神经网络(CNN)提取场景特征,再利用区域特征聚集提取场景中的人物特征。然后,利用AP的层次关联网络模块提取群组关联信息。最后,利用长短期记忆网络(LSTM)融合个体特征序列与群组关联信息,并得到最终的群组识别结果。与多流卷积神经网络(MSCNN)方法相比,CRN方法在Volleyball数据集与Collective Activity数据集上的识别准确率分别提升了5.39与3.33个百分点。与置信度能量循环网络(CERN)方法相比,CRN方法在Volleyball数据集与Collective Activity数据集上的识别准确率分别提升了8.7与3.14个百分点。实验结果表明,CRN方法在群体行为识别任务中拥有更高的识别准确精度。