基于知识蒸馏与RP-MobileNetV3的电能质量复合扰动识别

作者:贺才郡; 李开成*; 董宇飞; 宋朝霞; 肖贤贵; 李贝奥; 李旋
来源:电力系统保护与控制, 2023, 51(14): 75-84.
DOI:10.19783/j.cnki.pspc.221856

摘要

针对复合电能质量扰动(power quality disturbance,PQD)识别中特征提取复杂、识别正确率低和模型难以轻量化等问题,提出一种利用递归图(recurrence plot,RP)对PQD信号可视化方法和基于知识蒸馏的模型训练方法。首先,基于RP挖掘PQD信号隐含特征并构建图像数据集,并利用深度残差收缩网络(deep residual shrinkage network,DRSN)对图像数据集进行更深层次特征提取并完成自主分类。然后,基于知识蒸馏(knowledge distillation,KD)让已训练的DRSN指导轻量化网络MobileNetV3进行训练,通过蒸馏实现知识的跨网络传输。最后,仿真实验和硬件实验表明,利用知识蒸馏训练的MobileNetV3能实现高精度且轻量化的复合扰动识别,同时在30 dB噪声环境下正确率能提升1.06%,对实际扰动信号识别效果良好,具有良好的噪声鲁棒性。

全文