摘要
网络时代带来了生活上的种种便利,也带来了恶意代码的爆发式增长。报告指出,恶意代码的数量和种类都在快速增长,其中,恶意代码种类的增长对恶意代码检测的影响影响尤为突出。使用分类算法进行恶意代码检测是现在的一个热门研究方向,而繁多的恶意代码种类会极大地削弱分类效果。鉴于这种情况,本文提出了一种基于集成学习的恶意代码检测方法,该方法首先用DBScan算法对训练样本进行聚类,再用聚类得到的各个簇训练SVM分类器,对未知样本进行检测时,首先将待检测样本分类到训练得到的各个簇中,然后输入对应的SVM分类器进行分类,判断是否为恶意代码。实验结果表明,这种方法的准确率相对于直接使用SVM分类有明显提高,达到了较好的检测效果。
- 单位