摘要

在航空航天领域中,惯性陀螺等精密器件装配精度要求较高,目前大多采用人工装配的方法,装配效率低、装配过程受人主观影响大。针对上述存在的问题,采用基于Faster R-CNN模型的目标识别算法,通过VGG16特征提取网络提取特征信息,在模型训练过程中利用COCO数据集的深度网络模型进行迁移训练,防止模型过拟合并加速参数的训练过程。同时,该方法还与其他深度学习模型以及传统的目标识别算法进行了对比,在自建的数据模型测试集上进行试验。结果表明,基于VGG16的Faster R-CNN目标识别模型在复杂环境及物体发生遮挡的情况下对于惯性陀螺的识别具有明显的优势,准确率可达到87.80%,召回率80.30%,识别速度可达到15FPS,能够满足实时性要求。

  • 单位
    北京自动化控制设备研究所