摘要

传统蝗虫优化算法在处理优化问题时依然存在收敛速度慢、易陷入局部最优的不足.为此,提出了融合混沌映射和柯西变异机制的非线性蝗虫优化算法CCGOA.通过融合混沌Tent映射与反向学习机制,对种群初始化,在确保初始种群质量较优前提下,使种群尽可能均匀分布于搜索空间;利用余弦函数设计非线性自适应系数更新机制,更好均衡个体全局搜索与局部开发能力;引入柯西变异对当前最优个体进行变异扰动,避免算法陷入局部最优.通过基准函数寻优测试,证实提出的算法可以有效提升寻优精度和收敛速度.设计了特征选择算法CCGOA-FS并应用于特征选择问题求解.通过若干数据集测试,证实该算法可以有效进行最优特征子集选取,提升数据分类准确率.