基于改进ShuffleNet的板栗分级方法

作者:李志臣; 凌秀军; 李鸿秋; 李志军
来源:山东农业大学学报(自然科学版), 2023, 54(02): 299-307.

摘要

传统的板栗分级方法主要依靠人工或机械的多级振动筛,不仅分级准确率低而且容易把坏的板栗分成好的板栗。针对传统板栗分级存在的问题,构建轻量级的卷积神经网络实现高精度的板栗的自动分级。在自然光条件下用小米Note9手机拍摄获取包含优等品、一等品、合格品、虫蛀品和霉烂品板栗的5481幅图像应用于卷积网络模型的训练、验证和测试。在学习ShuffleNet的基础上构建了一个浅层卷积神经网络Shnet-1,Shnet-1由2个卷积模块和4个Shuffle构成的板栗图像特征提取网络。特征提取网络连接板栗分类器,分类器由全局平均池化层、隐含层和输出层组成的多层感知器。为了实现板栗分类的最大精度和最小计算量,对Shnet-1模型的超参数进行了优化。将Shnet-1的分类性能与各种深度学习模型如AlexNet、Mnet-1、ResNet18进行了比较分析。浅层卷积神经网络Shnet-1网络模型应用于板栗分级的准确率达到98.90%,坏的板栗被分为好板栗的比例小于0.5%。Shnet-1的计算量小,板栗图像分类时间为26 ms,其权重仅占488KB的物理存储容量。改进ShuffleNet的卷积神经网络模型Shnet-1模型能够快速和准确地完成对板栗的分级,为板栗的自动化分级提供了智能决策支持。

  • 单位
    金陵科技学院; 机电工程学院