摘要
土地利用/覆盖变化(landuse/cover change,LUCC)是当前全球变化研究的核心内容之一。土地利用遥感监测是土地利用变化相关研究的重要技术手段,尤其是高分辨率遥感技术和谷歌地球引擎(Google Earth Engine,GEE)云计算平台的出现,为土地利用空间信息的获取提供了新的途径和方法。本研究基于GEE云平台提供的Landsat-8 OLI时间序列卫星影像数据,采用随机森林(random forest,RF)和支持向量机(support vector machines,SVM)分类算法,对海南岛土地利用类型进行了遥感分类研究。结果表明:RF与SVM算法对海南岛土地利用中水体和建筑用地的分类精度均较高,对耕地、园地和林地分类精度较低。与SVM方法相比,RF分类方法能够更准确识别各类地物信息,更适于海南岛土地利用分类的研究。海南岛林地(包括天然林、橡胶林等)所占比例最大,主要分布在海南岛中部;耕地和园地面积接近,相间分布于海南岛大部分区域;水体和建筑用地面积较小,在海南岛均呈零散的分布状态,以沿海地区为主。GEE平台对于开展大区域土地利用分类与遥感动态监测具有重要的意义。
- 单位