摘要

针对汉语谓语中心词识别困难及唯一性的问题,提出了一种基于Highway-BiLSTM网络的深度学习模型。首先,通过多层BiLSTM网络叠加获取句子内部不同粒度抽象语义信息的直接依赖关系;然后,利用Highway网络缓解深层模型出现的梯度消失问题;最后,通过约束层对输出路径进行规划,解决谓语中心词的唯一性问题。实验结果表明,该方法有效提升了谓语中心词识别的性能。