摘要
准确把握上市公司的信用风险状态对监管者和银行等金融机构意义重大,融合财务指标与非财务指标构建信用风险预测指标集,文章提出了一种上市公司信用风险预测组合算法SMOTETomek-RFE-MLP.SMOTETomek混合采样算法以少数类样本过采样、多数类样本欠采样的方式解决样本分类不平衡问题;递归特征消除(Recursive feature elimination,RFE)算法将特征逐个加入模型,以分类精度为标准筛选出最优特征组合;多层感知机(Multi-layer perceptron,MLP)作为分类器实现上市公司信用风险预测.为验证算法的有效性,以2019年A股3797家上市公司的研究对象,设计基模型对比实验和消融实验进行算法测试.研究结果表明,SMOTETomek-RFE-MLP信用风险预测算法综合表现优于Adaboost等基线模型,解决了数据不平衡引起的分类紊乱和特征选择问题,对金融机构评估上市公司的违约风险具有一定的指导意义.
-
单位北京信息科技大学; 经济管理学院