摘要
为了探寻光谱解混模型估算植被覆盖度的精度及适用性,对广东省中山市民众镇义仓村内的一块香蕉林地,利用无人机高光谱数据,比较了3种植被覆盖度估算的经典模型(像元二分模型、Carlson模型和Baret模型)以及目前较为常用的3种光谱解混模型(线性光谱混合模型(Linear Mixed Model, LMM)、后验多项式非线性混合模型(Polynomial Post-nonliner Mixing Model, PPNMM)和考虑光谱变异的正态组分模型(Normal Compositional Model, NCM))估算植被覆盖度的效果.实验结果表明:像元二分模型高估了植被覆盖度;Carlson模型低估了植被覆盖度;Baret模型在低植被覆盖度区域内高估了植被覆盖度、在高植被覆盖度区域内低估了植被覆盖度;LMM模型在高植被覆盖度区域有较好的估算效果;PPNMM模型在低植被覆盖度出现小幅度高估;NCM模型估算的效果最佳.
- 单位