摘要

随着网络视频的爆炸式增长,视频记忆度成为热点研究方向。视频记忆度是衡量一个视频令人难忘的程度指标,设计自动预测视频记忆度的计算模型有广泛的应用和前景。当前对视频记忆度预测的研究多集中于普遍的视觉特征或语义因素,没有考虑深度特征对视频记忆度的影响。着重探索了视频的深度特征,在视频预处理后利用现有的深度估计模型提取深度图,将视频原始图像和深度图一起输入预训练的ResNet152网络来提取深度特征;使用TF-IDF算法提取视频的语义特征,并对视频记忆度有影响的单词赋予不同的权重;将深度特征、语义特征和从视频内容中提取的C3D时空特征进行后期融合,提出了一个融合多模态的视频记忆度预测模型。在MediaEval 2019会议提供的大型公开数据集(VideoMem)上进行实验,在视频的短期记忆度预测任务中达到了0.545(长期记忆度预测任务:0.240)的Spearman相关性,证明了该模型的有效性。