摘要

针对机场跑道裂缝的自主识别和提取过程中存在的阴影、光照不均匀以及效率和精度难以兼顾等一系列问题,提出利用遗传算法优化神经网络的机场道面裂缝检测算法;首先,将拍摄的机场道面裂缝图像进行预处理,包括图像灰度化、高斯滤波以及ROI区域确定;设定神经网络拓扑结构,初始化编码长度以权值阈值及等参数,利用选择、交叉和变异等操作反复执行至最佳进化解,进而搭建匹配的神经网络,获得最大分割阈值;结果表明,遗传神经网络算法在综合评价、召回率和准确率3个评价指标上均具有显著提升,其均值分别为93.22%、96.28%、90.75%,实现了在复杂背景下对裂缝提取的目标,为机场道面的后期维护和保养提供了技术支持。