摘要
针对目前机器学习研究领域中的数据分类问题,选择朴素贝叶斯算法作为研究对象。首先,通过对样本数据特征属性的权重进行加权调整,提高算法处理的准确率;然后,改进朴素贝叶斯算法分类器模型,使其能够利用Map/Reduce并行编程模型,采用多计算资源节点并行处理,进一步提高处理速度。最后,对UCI dataset数据库进行实验验证,结果表明:改进后的算法在海量数据分类处理中具有更好的性能表现。
-
单位中国人民解放军海军工程大学; 电子工程学院