应用RF和SVM的城镇土地利用面向对象分类

作者:涂梨平; 饶俊*; 舒斯红; 刘利敏
来源:江西科学, 2018, 36(05): 771-776.
DOI:10.13990/j.issn1001-3679.2018.05.012

摘要

中尺度城镇土地资源空间信息提取是资源环境监测的重要内容。以鄂州、黄冈区域城镇为案例,基于Landsat 8数据,使用面向对象方法提取地类光谱、纹理、几何和地形特征,并应用RF和SVM算法实施城镇土地利用分类。结果表明,合理尺度分割能够增强用地类型可识别性,提升解译效率; RF和SVM算法很好地模拟了地类对象属性特征地物类别间的模式规则,RF分类模型总体精度达89. 18%,Kappa系数为86. 33%,SVM模型总体精度为88. 03%,Kappa系数为81. 60%,整体而言RF分类结果优于SVM。该方案兼具可操作性、准确性,对大中尺度的土地资源信息提取适用性良好。

全文