摘要

文本向量特征挖掘应用于信息资源组织和管理领域,在大数据挖掘领域具有较大应用价值,传统算法精度不好。提出一种基于多因素方差分析的文本向量特征挖掘算法。使用多因素方差分析方法得到多种语料库的特征挖掘规律,结合蚁群算法,根据蚁群适应度概率正则训练迁移法则,得到种群进化最近时刻获得的数据集有效特征概率最大值,基于最优划分的K-means初始聚类中心选取算法,先对数据样本进行划分,然后根据样本分布特点来确定初始聚类中心,提高文本特征挖掘性能。仿真结果表明,该算法提高了文本向量特征的聚类效果,进而提高了特征挖掘性能,具有较高的数据特征召回率和检测率,时间耗时较少,在数据挖掘等领域应用价值较大。

全文