摘要
根据某炼油厂S Zorb装置的生产工艺和操作规范,用24个操作变量与精制汽油主产品的流量和硫含量的实际生产数据进行了相关性分析,压缩为10个操作变量后建立了基于Aspen Plus的生产过程机理模型;经随机抽样检验和灵敏度分析后,以原料进料流量和硫含量、加热炉进口温度、加氢石脑油进料流量、热分压力、热分温度、干气出装置温度、冷分温度为输入,精制汽油的流量、硫含量和氮含量为输出运行机理模型,拓展了装置的在线产品预测数据集;在此拓展数据集上,采用基于麻雀搜索算法的正则化极限学习机(SSA-RELM)建立了装置的在线产品预测数据驱动模型;最后以进料分区,将精制汽油流量、硫含量和氮含量为优化目标,给出了6个分区的在线操作最优化方案。
- 单位