摘要

目的为提高水下获取的结构物表面缺陷图像的对比度和清晰度,便于缺陷区域的分割、提取和识别工作,提出了一种基于改进的湍流模型和引导滤波平滑的retinex的图像增强方法。方法将光照不均的水下图像转换到Lab空间,对亮度空间进行自适应直方图均衡的匀光处理,根据暗通道先验理论估算匀光图像的透射率,结合大气湍流通用模型模拟退化图像,通过调整透射率系数获得退化图像。采用维纳滤波过滤图像噪声,将滤波后的图像作为导向图,利用导向滤波细化获得边缘保持的图像。根据3σ准则对3通道多尺度retinex(multi-scale retinex,MSR)的反射分量进行色彩矫正,获取最终增强后的水下结构物表面缺陷图像。结果选取多组在不同湍流环境下采集的图像为研究对象,采用本文提出的方法进行实验,并与经典的暗通道算法、直方图均衡算法以及单尺度retinex算法对比,使用信噪比、信息熵、标准差和平均梯度等指标进行评估。实验结果表明,本文方法的信息熵、标准差相较直方图均衡算法和单尺度retinex分别提高了11.7%和25.6%,分割准确率上升了3.1%。从主观效果上看,本文算法图像细节更为丰富,视觉效果自然。结论本文算法改善了退化模型的自适应问题,在信息熵、标准差、平均梯度等综合指标上均有优异表现,与暗通道先验方法相比,信噪比、平均梯度大幅提升,同时实现了缺陷的边缘保持效果,为下阶段的图像处理提供了良好的信息源。