摘要

森林地上生物量是森林生产力的重要评价指标,对其进行高效监测对维持全球碳平衡和保护生态系统具有重要意义。本文首先基于冠层高度模型数据,通过分水岭分割算法得到单木冠幅边界;然后在单木冠幅范围内提取23个LiDAR变量,结合佩诺布斯科特试验森林的87组实测数据,利用随机森林和支持向量机建立森林地上生物量估算模型;最后对样地模型估算的结果进行了比较,讨论了预测结果及其精度。结果表明:本文选用的随机森林模型和支持向量机模型在估算森林地上生物量的应用中获得了较高的精度;并且,随机森林模型在基于机载雷达数据估测森林地上生物量中的估算精度更高,模型泛化能力更强,制图精度也更好,具有更好的适用性。