摘要

图像配准是实现干涉合成孔径雷达(InSAR)高精度相位提取及地形高程反演的关键,大场景图像的高效高精度配准成为近年高分宽幅InSAR成像应用研究的难点问题之一。由于大场景图像中不同区域偏移量及变化规律差异较大,传统最大相干系数配准方法需多分块及插值处理,面临计算量大且配准精度低等问题。针对此问题,本文提出一种基于DFT模型的大场景InSAR高效高精度图像配准算法。该方法利用最小均方差准则构建InSAR复图像配准的DFT模型,采用四叉树自适应分块及矩阵相乘DFT快速重采样配准方法,实现大场景InSAR图像各子块区域的高效高精度亚像素配准。仿真和实测数据验证本文算法的有效性,结果表明该算法不仅可实现大场景InSAR复图像亚像素级配准,还具有较高的运算效率,其运算效率相对于传统FFT配准方法通常可提升3倍以上。