针对目标跟踪中的目标尺度变换、遮挡、快速运动等问题,提出自步上下文感知的相关滤波跟踪算法。首先在正则化最小二乘分类器中引入目标的全局上下文信息,使得这些上下文信息能够被滤波器所学到,并对目标产生高响应,对上下文信息接近零响应;然后引入自步学习,给每一帧的目标和上下文信息赋予权重,挑选出可靠的目标和上下文信息,更新滤波模板;最后学习得到稳健和高效的外观模型。实验表明本文算法在距离精度(DP)提高了2. 81%,成功率(SR)提高了13. 9%,具有较好的跟踪效果。