协同过滤算法是目前在电商系统中应用最广的推荐技术.为了缓解传统基于用户的协同过滤算法在冷启动、推荐准确性和数据稀疏性方面的缺点,本文提出基于用户特征的协同过滤推荐算法.此算法利用注册信息提取属性特征,并对已有的评分信息提取兴趣特征和信任度,综合以上各特征融合特征相似性进一步产生推荐.实验结果表明,与传统的基于用户的协同过滤算法做对比,基于用户特征的协同过滤算法对推荐的精度有大幅的提高.