针对传统的方法对蛋白质预测的精度低且需要人工提取环节等问题,提出一种基于深度学习和支持向量机的基因结合蛋白预测算法;该算法将卷积神经网络与门控循环单元结合,搜索蛋白质序列,保留蛋白质序列中氨基酸的位置依赖性,利用支持向量机代替神经网络的Softmax分类器对蛋白质的特征序列进行预测;将该模型分别在基准数据集DBP2858和PDB14189上进行对比实验。结果表明,该模型具有更好的脱氧核糖核酸结合蛋白预测能力,并且预测精度和效率均较高。