摘要
语义分割和深度估计任务是对图像像素级分类的研究,是两个高度相关的任务。从共享特征学习和特征交互融合两个角度出发,提出两个不同的多任务学习架构,即基于压缩激励模块(Squeeze-and-Excitation, SE)和金字塔池化的多任务学习网络(Multi-task Learning with SE and Pyramid Pooling, MTL_SPP),以及基于压缩激励和可选择权重(Selective Weight, SW)的多任务学习网络(Multi-task Learning with SE and Selective Weights, MTL_SSW),来联合学习语义分割和深度估计。MTL_SPP架构由共享骨干特征网络和任务特定的子网络组成,利用SE模块构建任务特定子网络,并利用金字塔池化增强特征提取。MTL_SSW在MTL_SPP的基础上,让任务特定子网络的语义分割特征和深度估计特征通过SW模块进行相互指导和优化,学习对特定任务更具判别性的特征。实验结果表明,提出的两种方法在NYUD_v2和SUNRGBD两个数据集上获得了优于先进方法的效果。
- 单位