摘要

老油田开发井数多、纵向上多套层系发育、油水关系复杂,地层对比人工解释工作量大、多解性强。常规大数据研究思路将多条测井曲线和分层样本标签通过选定的一种机器学习方法一次性建立样本预测模型,该方法预测模型精度低、收敛困难。针对性地提出了一种基于数据驱动和循环滑动时窗的小层智能划分方法,优选对地质分层敏感的测井曲线作为特征参数,为丰富样本库采取“窗口对点”的循环滑动时窗方法多次进行样本数据采集,通过优化不同机器学习方法的超参数,得到最佳训练模型,使用该模型对小层智能划分结果进行预测。分析结果表明,滑动时窗长度为20、步长为2时进行样本采集,基于随机森林方法构建的小层智能划分模型预测准确率达88.4%,优于常规一次性建模预测方法,取得最优的测试效果。