摘要
浆态床加氢是一种先进的非常规石油资源(重油等)加氢提质技术,它采用分散型催化剂以提高催化剂与原料中的沥青质等大分子的接触程度.沥青质等大分子中多环芳烃的快速转化是浆态床重油加氢技术的挑战,因此设计高活性的加氢催化剂是浆态床加氢技术的关键.作为典型的二维层状材料,分散型MoS2催化剂表现出较好的催化加氢性能.然而,纳米尺寸的分散型MoS2催化剂的稳定性有待提高,在高温高压下MoS2片层会折叠并聚集成较大的颗粒以降低其表面能.MoS2颗粒的生长会导致其悬浮性降低和边缘活性位点暴露量减少,因而降低催化剂的活性和寿命.因此,急需设计开发高性能的分散型MoS2纳米催化剂,从而解决MoS2层在高温高压条件下的折叠和聚集难题,提高MoS2纳米催化剂的催化加氢活性和稳定性.纳米复合材料的构建可以有效地解决活性组分的团聚问题.近年来, Janus纳米复合材料因其在催化方面的广泛应用引起了科研人员的关注.此外,复合材料中各组分的种类对其催化活性有显著影响.早期研究表明,与Al2O3,SiO2, MgO或其他金属氧化物相比, TiO2复合MoS2催化剂具有较高的催化加氢活性.本文通过一步溶剂热法合成了一系列不同MoS2含量的Janus MoS2-TiO2纳米复合催化剂,并研究了其在浆态床催化菲加氢中的活性和稳定性.高分辨透射电镜结果表明, Janus MoS2-TiO2纳米复合催化剂由TiO2纳米粒子(10-15 nm)和MoS2片层(堆积层数为1-3和片层长度为2-10 nm)组成.活性位模型计算和NO化学吸附测试表明,与MoS2和负载型MoS2/TiO2催化剂相比, Janus MoS2-TiO2纳米复合催化剂中的MoS2层具有更高的MoS2分散度,暴露出更多的边缘配位不饱和Mo原子.X射线光电子能谱结果表明,通过形成Mo-O-Ti键成功构建了具有强MoS2-TiO2相互作用的Janus结构,并出现了TiO2向MoS2的电子转移现象.从TiO2到MoS2的电子转移会削弱Mo-S键并在基面产生大量配位不饱和Mo原子.浆态床催化菲加氢反应结果表明, Janus MoS2-TiO2纳米复合催化剂上菲转化率最高可达91.6%.而MoS2催化剂上菲转化率仅为50.4%.催化剂的稳定性评价结果表明,经过7次菲催化加氢循环反应后, Janus MoS2-TiO2-15纳米复合催化剂上菲转化率降低了25.1%,保持在68.6%,仍高于新鲜的MoS2催化剂上菲的转化率.然而经过7次菲催化加氢循环反应后, MoS2催化剂上菲的转化率下降了49.6%,仅为25.4%.与MoS2催化剂相比, Janus MoS2-TiO2纳米复合催化剂在高温高压下表现出更高的菲催化加氢活性和稳定性.结合反应后的催化剂表征,其高活性可归因于大量配位不饱和Mo原子的暴露.而其高稳定性主要是源于其稳定的Mo-O-Ti键提供的MoS2-TiO2强相互作用,可以有效地将MoS2层锚定在TiO2纳米粒子表面,避免MoS2层卷曲、折叠和团聚.综上,将二维层状催化剂与另一种纳米材料耦合形成Janus纳米复合催化剂是设计和构建在高温高压条件下具有较好催化性能和稳定性的二维层状催化剂的有效途径.
-
单位中国科学院大学; 中国科学院大连化学物理研究所; 催化基础国家重点实验室