摘要

针对红外与可见光图像融合过程中出现的细节损失严重、视觉效果不佳等问题,提出了基于多尺度几何变换模型的融合方法。首先,采用改进的视觉显著性检测算法对红外与可见光图像进行显著性检测,并构建显著性矩阵;然后,对红外与可见光图像进行非下采样剪切波变换,得到相应的低频和高频子带,并采用显著性矩阵对低频子带进行自适应加权融合,同时采用简化的脉冲耦合神经网络并结合多方向拉普拉斯能量和对高频子带进行融合处理;最后,通过逆变换得到融合图像。实验结果表明,该方法能够有效提升融合图像的对比度并保留源图像的细节信息,融合图像具有良好的视觉效果,且多个客观评价指标均表现良好。