摘要
为了更准确地掌握轨道交通客流在线网中的时空分布,更高效地匹配客流需求与运输能力,实现提高轨道交通运输效率、改善运营服务质量的目的,提出了一种基于长短期记忆网络的短期OD(交通起止点)客流量预测方法。以历史客流数据为基础,定性分析车站间OD客流量的时空相关性,利用回归分析法定量分析客流影响因素,筛选出运营时刻、运营日特征、最低气温3个时间特征。为提高预测精度,以长短期记忆网络为基础,结合时间特征,为每对起讫点单独构建预测模型,形成了基于长短期记忆网络的轨道交通短期OD客流量预测模型。以苏州市为例进行验证,结果表明,加入了时间特征的短期OD客流量预测模型较移动平均模型、仅利用历史客流数据训练的基于LSTM网络的短期OD客流量预测模型,预测结果与真实值之间的误差降低了6.27%~8.58%,所提出的方法和模型可为轨道交通运营部门制定列车运行计划、组织客运工作提供更准确的数据资料。
- 单位