摘要

为探索采用无人机(UAV)遥感影像进行亚热带树种识别的应用潜力,提出一种结合残差模块和有效通道注意力的网络(ECA-ResNet)对单木树冠影像数据集进行模型训练和识别。首先,利用单木分割算法提取单木树冠,构建不同尺度的UAV可见光影像单株树冠影像块样本数据集,并将其划分为训练数据、验证数据和独立测试集;其次,以ResNet50为主干网络,在瓶颈层插入有效通道注意力并调整网络结构,构建ECA-ResNet;最后,将数据集载入预训练的ECA-ResNet模型,进行参数迭代训练和验证并进行独立测试,择优确定单木树冠的合适窗口大小。结果表明:ECAResNet对64×64像素的单木树冠影像数据集中树种的识别效果更为理想,训练精度和验证精度分别达98.98%和96.60%,独立测试识别精度、Kappa系数分别达85.61%、0.8140;ECA-ResNet模型的训练、验证、独立测试精度分别高于ResNet50网络2.63个百分点、1.80个百分点、5.31个百分点。该研究结果证明卷积神经网络(CNN)能够充分提取可见光图像的空间特征,有效通道注意力能够有效提升CNN的单木树种识别能力。

  • 单位
    中国林业科学研究院资源信息研究所