摘要
测井曲线预测是解决因井径变化、仪器故障等因素造成曲线测量效果不佳或某段曲线缺失的有效手段。从记忆学习的角度入手,对传统长短时记忆(LSTM)循环神经网络在测井曲线预测过程中特征提取、权值匹配及预测误差等问题进行分析,阐释Attention机制(以下简称Att机制)在解决此类问题中的重要性。基于TensorFlow平台搭建了Att-LSTM预测模型,并利用该模型实现了测井曲线的预测。结果表明:在LSTM神经网络中引入Att机制增强了不同时深下的测井特征关联性,优化了不同时间段的测井特征权重分配问题。将Att-LSTM模型和LSTM模型实际预测结果进行对比,Att-LSTM模型预测的测井曲线误差有所下降,精度较传统LSTM模型提高约8%,证实了在LSTM模型中引入Att机制的合理性及实用性,为测井曲线预测提供了一种新思路。
-
单位新疆油田公司; 西安石油大学