摘要

为了解决光流跟踪法定位精度不足、误差累积和特征点匹配法耗时久的问题,设计了一种将随机抽样一致性(random sample consensus,RANSAC)光流跟踪法和改进的特征点匹配法结合的视觉里程计。利用RANSAC光流跟踪法对关键帧之间的小规模运动进行估计,RANSAC算法对光流跟踪的误匹配点进行剔除,大大降低了光流跟踪法存在的误匹配;而关键帧之间的运动估计则利用改进的特征点匹配法,以修正光流跟踪法的估计误差;最后利用卡尔曼滤波将RANSAC光流跟踪法和改进的特征点匹配法进行融合。实验结果表明:该文的算法能够克服光流跟踪法精度不足、误差累积的问题,将平均相对误差由15.5%提升到了2.6%;同时也能在一定程度上提高特征点匹配法的速度,将特征点匹配法的平均耗费时间由37.28 ms提升到了21.07 ms。