摘要
局部放电(PD)是配电设备绝缘故障早期的主要表现形式,放电类型的模式识别对于设备绝缘性能的判定具有重要意义。考虑到极限学习机(ELM)法结构简单、训练速度快,但初始参数选取随机性大,算法稳定性不够的特点,提出一种基于融合ELM算法的PD模式识别方法,综合考虑不同特征判断准确率的差异,采用自适应权值分配对子分类器输出结果实现决策级融合。文中设计了4种放电物理模型来模拟典型的设备绝缘缺陷,采用高频电流法对PD信号波形和相位-幅值谱图(PRPD)进行采集,获得足够样本的实验数据,提取时频域及统计特征值进行分类。结果表明融合ELM算法在保证训练速度的同时,在识别正确率和稳定性上均优于传统ELM算法和反向传播(BP)神经网络。
- 单位