摘要

传统的神经网络模型主要是以词向量的形式处理短文本的分类任务,造成模型过度依赖分词的精度,而短文本又具有语料短、特征发散的特点,针对这一系类问题提出一种基于BERT和BiLSTM相融合的短文本情感分类模型。首先,利用BERT模型将训练的文本转换成以字为单位的向量表示形式;随后,将生成的字向量作为双向长短期记忆网络输入,获取到相关字的上下文的语义表示;并通过加入随机Dropout机制防止模型发生过拟合;最后,将提取的特征向量输入到全连接层,经过Softmax函数计算出文本所属的情感类别。经实验表明,在处理短文本方面,基于BERT-BiLSTM的算法模型比传统的利用词向量的神经网络模型分类更加精准可靠。