对R~2上沿曲线(t,γ(t))的振荡积分算子■进行了研究,其中,γ(t)=|t|~k或γ(t)=sgn(t)|t|~k,α,β,k为使得算子T_(α,β)有定义的任意实效.假设αβ>0,|β|>3|α|以及β≠1,得到T_(α,β)在L~p(R~2)上有界,当且仅当k≠β,其中p∈((2β)/(2β-3α),(2β)/(3α)).