摘要

针对单一预测模型都存在各自优缺点的问题,本文提出时序回归GM-SVM模型,以达到最优的变形预测效果。首先对灰色模型中的灰参数导致的时间序列残差进行研究,形成时间序列模型,根据时间序列模型对其残差进行最优化设计,获取时间序列估计模型,并将该模型与支持向量机进行无缝融合以建立新的预测模型,然后根据该预测模型对观测的大坝变形影响因子进行训练和预测,并将预测结果与实际的变形值进行对比分析,经过实例分析确定该模型的预测结果更加接近实际观测值,说明该模型更加适用于基于大坝变形影响因子的变形分析。

全文