摘要

基于百度百科对词语相似度计算进行研究,结合TF-IDF算法和词条百度百科内容,提出一种基于改进TF-IDF的百度百科词语相似度计算方法。TF-IDF算法对文本中词语权重进行计算时,面临部分代表性较好的词语权重较低的问题,通过引进百科词条中词语分布的类别信息,包括词语在类内、类间分布对词语权重的影响改进词语权重计算,此外,根据词语在全集中出现的频率定义词语的代表性,通过计算百科词条中词语的权重因子,构建词条的相关向量,根据向量之间余弦值计算词语相似度。实验表明,相对于不使用TF-IDF方法计算权重和基于经典TF-IDF方法计算权重,结合类别信息的TF-IDF方法和定义代表性的TF-IDF方法提高了词语相似度计算的准确性。

全文