摘要

针对于星-箭连接动态界面力无法通过力传感器直接测量,且典型时域动载反演方法难以准确计算界面力的时域变化等难点,提出了基于长短时记忆(LSTM)神经网络的星-箭界面力深度学习反演方法。首先通过卫星地面测试试验得到数据依据,以卫星主体结构的加速度测量数据为输入层,以星-箭界面力测量数据为输出层,利用LSTM神经网络建立输入和输出间的反演映射关系模型,实现卫星在发射过程中较高精度的界面力反演。进而,设计并开展了某典型卫星结构的正弦扫频和随机振动实验,测试LSTM界面力反演方法的可行性。结果分析可知,所提出的基于LSTM深度学习反演方法能够精确地获得动态界面力时程数据,两项性能指标均优于目前典型的载荷反演方法。